
Bulletin of the Seismological Society of America, Vol 89, No. 1, pp. 202-214, February 1999

Using a Genetic Algorithm to Model Broadband Regional Waveforms

for Crustal Structure in the Western United States

by Joydeep Bhattacharyya,* Anne F. Sheehan, Kristy Tiampo, and John Rundle

Abstract In this study, we analyze regional seismograms to obtain the crustal

structure in the eastern Great Basin and western Colorado plateau. Adopting a for-

ward-modeling approach, we develop a genetic algorithm (GA) based parameter

search technique to constrain the one-dimensional crustal structure in these regions.

The data are broadband three-component seismograms recorded at the 1994-95 IRIS

PASSCAL Colorado Plateau to Great Basin experiment (CPGB) stations and supple-

mented by data from U.S. National Seismic Network (USNSN) stations in Utah and

Nevada. We use the southwestern Wyoming mine collapse event (M_ = 5.2) that

occurred on 3 February 1995 as the seismic source. We model the regional seis-

mograms using a four-layer crustal model with constant layer parameters. Timing of

teleseismic receiver functions at CPGB stations are added as an additional constraint

in the modeling.

GA allows us to efficiently search the model space. A carefully chosen fitness

function and a windowing scheme are added to the algorithm to prevent search

stagnation. The technique is tested with synthetic data, both with and without random

Gaussian noise added to it. Several separate model searches are carried out to estimate

the variability of the model parameters. The average Colorado plateau crustal struc-

ture is characterized by a 40-km-thick crust with velocity increases at depths of about

10 and 25 km and a fast lower crust while the Great Basin has approximately 35-

km-thick crust and a 2.9-km-thick sedimentary layer.

Introduction

Crustal structure of the Colorado plateau and the Basin

and Range provinces of the western United States has been

a subject of considerable debate for the last three decades.

Several seismological data types, including receiver func-

tions, refraction profiles, body and surface waveforms, and

travel times, have been used to constrain the average one-

dimensional velocity structure in these regions (Roller,

1965: Keller et al., 1979; Priestley and Brune, 1978; Wolf

and Cipar, 1993; Ozalaybey et al., 1997; Song et al., 1996;

Sheehan et al., 1997). These studies have presented varying

estimates of crustal thickness and the depth to the crustal

discontinuities. The difference between these estimates can

be attributed to the different spatial sampling of the studies

coupled with various assumptions adopted in each of the

analyses. Recent availability of high dynamic-range, digital

broadband instrumentation enables us to greatly improve our

ability to estimate seismic parameters from regional seis-

mograms. These seismograms have been shown to be
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strongly sensitive to the crust and lithospheric structure (e.g.,

Song et aL, 1996; Rodgers and Schwartz, 1997, 1998; Oz-

alaybey et al., 1997). Use of improved analytical and com-

putational tools, for example, computing source parameters

and synthetic seismograms, let us remove some of the as-

sumptions made during the analysis and improve signal ex-

traction. Moreover, availability of portable high-quality

three-component seismometers allow us to rapidly increase

the spatial sampling of our data, thereby letting us investi-

gate unexplored regions.

In principle, modeling that makes use of the whole seis-

mic waveform, including both body waves and surface-wave

modes, should have advantages over methods that use only

narrowly selected parts of seismograms, such as arrival times

or phase velocities. Full waveforrn modeling also allows us

to use information contained in higher modes without having

to explicitly identify those modes. This modeling technique

does not require the station density required by body-wave

tomography and has increased sensitivity to crustal structure

over teleseismic phase velocities. Thus, it is a technique ide-

ally suited for regional deployments of broadband sensors

such as the Colorado plateau to Great Basin PASSCAL ex-
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periment (Jones et al., 1996). By including both radial and

vertical waveforms in our modeling, we obtain increased

sensitivity to SV and reduce the chances of modeling noise

coherent on only one channel. Finally, our complete wave-

form modeling technique allows for phase conversions due

to the intracrustal layers and for regional waveforms in-

creases the delineation of thin crustal layers.

In this study, we adopt a forward-modeling approach to

constrain the crustal structure in both the Colorado plateau

and the Great Basin provinces. A simple crustal model is

adopted, and synthetic seismograms are computed for these

models. We search the solution space using a large number

of models and select the model that best fits the synthetics

to the recorded data using some fitness measure. We adopt

the reflectivity technique (Randall, 1994) to compute the

synthetics. For the search algorithm, we adopt the genetic

algorithm (GA) modeling technique in this study. Many seis-

mological optimization problems are nonlinear and result in

irregular fitness functions. Moreover, they can have a rough

fitness landscape with several local minima. Thus, local op-

timization techniques, such as linearized matrix inversion,

steepest descent, and conjugate gradients, can converge pre-

maturely to a local minima. In addition, the success in ob-

taining an optimum solution can depend strongly on the

choice of the starting model. To mitigate these problems,

global optimization techniques that avoid these limitations

are particularly useful in seismology. GA is such a technique
that allows us to efficiently search the model space and con-

verge toward a global minima. Using these tools, we have

developed a parameter estimation technique that lets us rap-

idly model the one-dimensional crustal structure using three-

component broadband seismograms.

In the following sections, we first discuss the data and

the sensitivity of the various model parameters on the data.

Next, we develop the GA search scheme and test our tech-

nique with synthetic data with various levels of noise added
in. This step allows us to estimate the robustness of our

technique. Finally, this method is used to model the crustal

structure in the Colorado plateau and Great Basin provinces.

Dataset

The seismograms used in this study come from the Col-
orado plateau-Great Basin (CPGB) deployment of 11 broad-

band portable sensors in Colorado and Utah from October

1994 to July 1995 (Jones et al.. 1996: Sheehan et al., 1997).

Broadband recordings from nearby U.S. National Seismic
Network (USNSN) stations Battle Mountain, Nevada (BMN),

Kanab, Utah (KNB), Elko, Nevada (ELK), and Mina, Nevada

(MNV), have been added to this dataset. The station locations

are shown in Figure 1. In this study, waveforms from the

mine collapse event in southwestern Wyoming (Pechmann
et al., 1995) are modeled. The seismic event (Mb = 5.2)

occurred on 3 February 1995, 29 km west of the town of

Green River, Wyoming (Fig. 1). This is a well-modeled

event and is within 140 to 800 km of the CPGB stations. The

use of a well-calibrated source minimizes the biasing effects

of unmodeled source signature in the estimation of seismic
structure. Pechmann et al. (1995) have concluded that the

seismic source can be represented as a 0.5-km-deep mine

collapse event. Therefore, with a shallow source depth and

for regional propagation distances, the body waves and the
surface waves recorded in the early part of the seismogram

(and used in this study) primarily travel through the crust
and can constrain the average crustal structure. The accurate

determination of both the source location and origin time

allows us to estimate correctly the arrival times of the body
and surface waves.

Both the CPGB and the USNSN stations recorded the

event on three components. No clear arrival is observed in

the transverse component, primarily due to the implosional
nature of the source. This point has also been noted by Pech-

mann et al. (1995). Therefore, in this study, we model the

vertical and the radial components that can be adequately

combined to investigate high-resolution one-dimensional

crustal structure (Song et al., 1996). We add that, in earth-

quake events, the technique described in this article can read-

ily incorporate the transverse-component data and thereby

improve the shear velocity model.

The recorded seismograms are first instrument decon-

volved and integrated to displacement. This is important be-

cause it allows us to combine recordings made using differ-

ent instrument types and also allows us to extend the data to

longer periods. For example, clear signals are observed up

to 40 sec while the long-period roll offs for the CPGB in-

struments are typically at 30 sec. Next, a third-order zero-

phase Butterworth filter is applied with a bandpass between

10 and 50 sec. The particular frequency cutoffs are used

primarily for two reasons: (a) the high-frequency features in
the seismogram are not modeled in this study because they

can strongly be affected by lateral variations of elastic prop-

erties and thereby bias the one-dimensional model: (b) sig-

nals at very long periods had to be removed because noise

levels are amplified at these periods due to instrument de-

convolution, thereby severely contaminating the signal. The

radial- and vertical-component seismograms used in this

study are shown in Figure 2. We can observe clearly the

Rayleigh waves in the seismograms, and as expected for the

collapse-source mechanism, Love waves are absent for this
event. We have concentrated our modeling efforts on the

Rayleigh waves because of two reasons: (a) these waves are

the most prominent arrival observed in the data (Fig. 2) and

are thus expected to have a large signal-to-noise ratio;

(b) these waveforms have simple wave shapes and can be fit

using simple 1D crustal models. However, the waveform

fitting technique used in this study is capable of modeling

the complete waveform, that is, body waves and surface

waves. The data window is selected by marking the moveout

velocities, isolates the Rayleigh wave (Fig. 2). These mov-
eout velocities are also used to excise the Rayleigh wave-

form from the synthetics, thereby preserving the duration
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Figure 1. Location of the 3 February 1995

mine-collapse event and the seismic stations at
regional distances used in this study. Stations

BMN, DUG, ELK, KNB, and MNV belong to the
U.S. National Seismic Network (USNSN), and

the rest of the stations are from the Colorado

plateau to Great Basin {CPGBt PASSCAL ex-
periment. The diamonds indicate stations used

for estimating Great Basin crustal structure,

and stars indicate stations used for modeling

the Colorado plateau crust. Solid lines denote
state boundaries, and dashed lines show

boundaries between geologic provinces.

and the arrival-time information when the synthetics are

compared to the data. We use a conservative window size

that allows for variable arrival times due to laterally varying

seismic structure and dispersion. Typically, the extracted

waveforms are 35 to 50 sec long. The vertical lines in Figure

2 show the seismograms and the data window used in this

study.

Model Sensitivities

Given an accurate source location and mechanism, a

usual problem for waveform modeling is to understand the

sensitivity of the data to the model parameters. Moreover,

regional seismograms produced by shallow events, like the

one used in this study, can be very complicated (e.g., Song

et al., 1996). To better understand these effects, we have

carried out simple tests using synthetic seismograms com-

puted using different one-dimensional crustal models. Our

goal is to identify the parameters in the model that the data

are sensitive to and allow variations only in those parameters

in the modeling procedure. To simulate real data analyzed

in this study, we carried out these tests using reflectivity

synthetics (Randall, 1994), and we used the moment tensor

source presented for this event by Pechmann et al., 1995.

We have used a one-dimensional velocity model given by

Wolf and Cipar (1993) that is derived from refraction lines

across southeastern Utah and northeastern Arizona. The

model, inverted from the Chinle-to-Hanksville line, essen-

tially consists of three crustal layers of constant layer veloc-

ity and thicknesses. We have slightly modified this model

by adding a sedimentary layer. Simplified models are de-

veloped by varying each of the model parameters separately,

isolating the sensitivity of the synthetics to each of them.

The radial- and vertical-component synthetics are filtered to

periods between 10 and 50 sec to make them consistent with

the recorded seismograms. Following Patton and Taylor

(1984), the shear-wave attenuation (Q/C) in the crust is fixed

to 100, and we use a scaling ratio of Q,:Q/s equal to 2. Fi-

nally, the synthetics are computed for distance ranges of 200

to 900 kin, encompassing the source-to-receiver distances

used in our study.

We have carried out a number of experiments to esti-

mate separately the effect of layer velocities, thicknesses,

Poisson's ratio, and densities. By systematically varying the

velocities of the sediment layer, upper and lower crust, and

upper mantle, we tested the sensitivity of the synthetic seis-

mograms to these parameters. From these experiments, we

find that these shallow source waveforms are strongly af-

fected by the sediment layer and the upper crustal layer ve-

locities, are affected by the lower crust at larger distances

(probably due to their increased depth of penetration), and

are insensitive to the uppermost mantle velocity. Because

we use a fixed Vp:Vs ratio, changing P-wave velocities ef-

fectively modifies tile S-wave velocities too. Changing layer

thicknesses had a similar effect and therefore can trade off

with the velocities in the fitting process. The synthetics are

slightly affected by the density of the crust and insensitive

to upper mantle density variations. We vary Poisson's ratio

between 1.73 and 1.82, thereby covering the range of pos-

sible continental values (Rudnick and Fountain, 1995; Chris-

tensen and Mooney, 1995; Christensen, 1996); this factor

slightly affects the synthetics. The synthetics are sensitive to

the total crustal thickness at distances larger than 300 kin.

We conclude from these tests that the synthetics are mostly

sensitive to the shallow layers (approximately 0 to 30 km),

a point also noted in Song et al. (1996). We also note that
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Figure 2. (a) The vertical- and radial-component seismograms used in this study to estimate Colorado

plateau crustal structure. The solid lines show the recorded seismograms that have been instrument de-

convolved to displacement and bandpass filtered between periods 10, and 50 sec. For each station, the

upper traces are from vertical-component seismograms, and the lower trace is radial component. The

vertical lines indicate the portion of the seismograms used for waveform fitting, and the source-to-receiver

distance is shown for each station. Each of the seismograms are normalized to their maximum amplitudes.

The dashed lines show the synthetic waveforms predicted by our best-fitting one-dimensional crustal

model for this region. Note that the recorded seismograms are slightly slower than those predicted by
our model for stations CYF, LMP, and SRS and faster for stations WMT and RCC. (b) Similar to Figure

2a, but for stations used in modeling the crustal structure of the Great Basin province. We note that the

seismograms recorded at stations BMN and ELK are slightly slower and seismograms at WCP and RTS
are slightly faster than those predicted by our average model.

the seismograms are not sensitive to the uppermost mantle

structure. Because we do not have a complete data coverage,

trade-offs between model parameters can occur. To diminish

these effects, we allow variation in model parameters within

prescribed limits whose values are based on published re-

suits from the study regions. Also, these trade-offs can give

rise to several local minima: GA is capable of identifying the

global minimum in such a situation (Goldberg, 1989). Based

on these tests, it can be concluded that the data are adequate

to model for four crustal layers, which includes a thin sed-

imentary layer. However, it is stressed that the whole crust

in the western United States is not as simple as our 1D mod-

els (Hearn et al., 1991: Wolf and Cipar, 1993; Sheehan et

al., 1997). Our goal in this study is to develop a technique
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that can rapidly obtain an average 1D regional model and is

consistent with the relatively long-period data (10 to 50 sec).

Use of Genetic Algorithms in Seismic

Waveform Modeling

In recent years, GA have been employed in the solution

of nonlinear optimization problems in the physical sciences.

Most geophysical modeling problems are traditionally

solved using local optimization techniques, such as linear-

ized matrix inversion, steepest descent, conjugate gradients,

or grid search techniques. These techniques can sometimes

converge prematurely to a local minima, and success can

depend strongly on the choice of a starting model. A global

optimization technique such as a GA mitigates these prob-

lems and are an attractive search tool suitable for the irreg-

ular, multimodal fitness functions typically observed in mod-

eling seismic waveforms. Since a GA undergoes an initially

random and progressively more deterministic sampling of

the parameter space, these algorithms offer the possibility of
efficiently and relatively rapidly locating the most promising

regions of the solution space. Their ability to solve nonlin-

ear, nonlocal optimization problems without a priori knowl-

edge of curvature information precludes the need for deriv-

ative computations, a particularly important feature because

it allows for fast approximate forward modeling where no
exact derivative information is available (Wright, 1991). Be-

cause genetic algorithms sample the space directly, lineari-
zation of the problem is unnecessary, thus avoiding errors

involved in this approximation. Use of synthetic seismo-

grams for modeling seismic waveforms, which involves the

nonlinear interaction of model parameters, is an obvious ap-

plication of this feature.

Several recent studies have employed GAs to invert for

seismic structure (Stoffa and Sen, 1991; Sen and Stoffa,

1992: Stoffa et al.. 1994: Boschetti et al.. 1996), hypocenter

relocation (Billings et al., 1994), seismic phase alignment
(Winchester et al., 1993), fault-zone geometry (Yu, 1995),

.mantle velocity structure (Neves et al., 1996; Curtis et al.,

1995: Lomax and Snieder, 1995), and crustal velocity struc-

ture (Jin and Madariaga, 1993: Drijkoningen and White,

1995: Zhou et al.. 1995). Our modeling of seismic structure

in the Colorado plateau and eastern Great Basin will use a

GA as shown in Figure 3. The program employs a random

number generator to produce an initial set of 100 potential

values for each of the waveform parameters, within an ini-

tially, specified range of acceptable values. These model val-

ues are then coded as genes, which in turn are combined to

form specific models, or chromosomes, for each member of

the initial population of 100 potential solutions. These mod-
els are ranked, from the best to the worst, according to a
fitness function, which is obtained from the cross-correlation

function computed between each synthetic and the recorded

seismograms. We do not shift the waveforms in time to im-

prove the fit. This procedure preserves the absolute travel

time of the Rayleigh waves and, because the mine collapse
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Figure 3. The flowchart of the genetic algorithm
adopted in this study. The individual steps are dis-
cussed in the text.

origin time is well constrained (Pechmann et al., 1995), pro-

vides an important constraint on the velocity structure. The

models with the highest cumulative correlation coefficient
(used in this study as a fitness measure and described later)
are the fittest and are selected, based on their relative fitness,

to contribute to the next generation, where the genetic opera-

tions of crossover and mutation take place (Wright, 1991:
Michalewicz, 1996). Between each subsequent generation of

the GA, a crossover operation occurs, in which two randomly

selected members of the new population swap genes based

on a randomly generated position in the string. The parent

models are recombined, with the left portion of one parent

and the right portion of the other parent creating one new

model, or offspring, of the correct length. The corresponding

recombination on the remaining subchromosomes creates a

second offspring. In two-point crossover, the parents are

split at two randomly selected locations in the parent models,

with everything to the right of the first location in one parent

recombining with everything to the left of the same location

in the second parent, while the second offspring is generated

from everything to the left of the second location in the first

parent and everything to the right of that same location in
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the second parent (Michalewicz). Crossover is the device by

which the random information exchange takes place--new

members with different fitness are generated in order to

evolve our directed search. In a GA, mutation corresponds

to the replacement of a gene, that is, a model parameter, by

a new, randomly generated value. Mutation is done to ex-

plore random parts of the model space that might have been
otherwise missed.

Each model parameter is represented by an array of real

values (Wright. 1991). The CPU intensive nature of the par-

ticular fitness function employed for the waveform modeling

and the necessity for high precision calculations makes the

use of a real-valued GA very attractive. We use an elitist
function in this algorithm that ensures that the best member

of all populations, current and prior, is stored in memory and

then copied into each current population, where it might oth-

erwise no longer exist (Michalewicz, 1996). To avoid search

stagnation, a windowing function was added to the GA. Sig-

nificant trade-offs between the crustal seismic properties can

result in a rough fitness landscape with numerous local min-

ima. This particular fitness landscape can generate a popu-

lation with a small standard deviation of the population fit-

ness after only a relatively few generations. This can

decrease the selection pressure toward better structures,

causing the search to stagnate and even reach premature con-

vergence in several instances. As a result, we created a rou-

tine to window the fitness by subtracting the fitness value of
the worst member of the previous generation from every new

population fitness, prior to selecting the next generation.
This ensured that those members with a better relative fitness

were included in a greater proportion in the next generation.

despite the small absolute difference in their fitness.

Features of the Waveform Modeling

Modeling Constraints. As described earlier, several recent
studies have modeled the crustal structure of the Colorado

plateau and the Great Basin provinces. Constraints on the

seismic structure from these studies can greatly improve the

search algorithm. The constraints help us primarily by (a)

reducing trade-offs between model parameters, (b) decreas-
ing the possibility of converging to a local minima, and (c)

increasing the convergence rate by allowing us to consider

a subset of the models. The following constraints have been

used in the GA modeling.

1. Receiver function constraints on the Ps times. The Ps

times are defined as the travel time difference between

the direct P and the converted S wave resulting from the
interaction of the P wave with the Moho under a given
station. The Ps times used here are obtained from the

study of Sheehan et al. (1997). The Ps time for a crustal

model can be calculated from the average P and S veloc-

ities, crustal thickness, and an average ray parameter for
the incoming P wave (Zandt et al., 1995). The observed
Ps times for stations in the Great Basin and Colorado

.

.

4,

plateau provinces are 4.2 + 0.4 sec and 5.1 _ 0.4 sec,

respectively (Sheehan et al., 1997). In this study, we limit

our search to models that produce theoretical Ps times

within these limits. In conjunction with average crustal

velocity, this constraint can improve our estimate of the
total crustal thickness.

Vn:V_ ratio. In the GA modeling, we use a fixed Ve:V _
ratio. For the sedimentary layer, this value equals 1.73
(Poisson's ratio = 0.25), and for the rest of the crust, we

use 1.77 (Poisson's ratio = 0.265), following the results
of Schneider (1997).

Density. The densities for the crustal layers are calculated

using the empirical relation p = 0.252 + 0.3788 × Vr,
(Nafe and Drake. 1957). This constraint has also been

successfully used in several recent western U.S. crustal

studies (Wolf and Ciper, 1993).

Upper mantle velocity. In a recent study, Schneider

(1997) analyzed the surface-wave phase velocity curves

to explicitly model for the upper mantle shear-wave ve-

locity in this region. These phase velocity data provide
better constraints on the uppermost mantle velocity than

our data, and we use the Pn velocity estimate from this

study in our modeling. Briefly, we have fixed the upper-
most mantle P-wave velocity in our model to 7.9 km/sec

and use an uppermost mantle S-wave velocity of 4.46 km/
see.

Input Parameters. The following parameters are set a priori

in the modeling algorithm and have the same value in each

generation:

1. Probability of crossover. We tested the convergence for
both one- and two-point crossover schemes and found

their rates to be similar, producing nearly the same model
solutions. We thus use both of these variations of GA in

our modeling. The crossover probability was set based

on tests run on synthetic data to determine the best con-

vergence for different crossover rates.

2. Probability of mutation. This probability value controls

the number of times mutation occurs kn a given popula-

tion, that is, for models in a particular generation. This

value can be optimally set to equal fin, the number of
model parameters (B_ck, 1996). In this study, n is equal
to 8.

3. Range of model parameters. The algorithm chosen for

this study randomly searches for model parameters within

a prescribed range of values. Unrealistic model parame-

ters can lead to inordinately large model spaces, thus

leading to slower convergence.

The Fitness Function Value. In this algorithm, we seek the

model that produces synthetics that most closely fit the ob-

served data. For the fitness function of a given crustal model,

we consider the following two measures:
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1. The cross-correlation coefficient (CC) between the syn-

thetic and the data (both normalized to unity) for each

seismogram. The average CC for all the stations, using

both vertical and radial components, is computed and
used as the cumulative correlation coefficient (r) for that

model. In computing this average, the seismograms are

all equally weighted. Also, we preserve the absolute

times of the Rayleigh waves by fixing the fitting window

for each seismogram.

2. The root-mean-squared (rms) misfit between the data and

the synthetics.

We note that both the above-mentioned fitness measures

are based on the L2 norm (Parker, 1994). Therefore, these

measures selectively fit the larger amplitudes in the seis-

mogram. Thus, the use of an accurate estimate of the source

time along with the use of the same time windows in the

data and the synthetic, using moveout velocities, allows us

to preserve the travel times of the Rayleigh waves in the

fitting process. Tests with synthetic data show that the best-

fit models, usingeither of the fitness values, give nearly iden-

tical solutions. In a similar analysis, Rodgers and Schwartz

(1998) have also reached the same conclusion. As synthetic

tests determined that the average correlation coefficient

showed faster convergence, we adopted this measure in our
fitness measure.

The GA chooses the model with the greatest fitness

value (FV) to be the fittest member of the population. There-

fore, FV must be calculated to be an ever-increasing function

of the fitness measure. A simple solution is to exponentiate

the correlation coefficient, r, and set that equal to FV. How-

ever, in the presence of several local minima, with fitness

values approaching the global minima, premature conver-

gence can occur as the crossover procedure between models

with marginally inferior fitness corrupts the algorithm. In-
creasing the separation between the fitness values of these

minima can be accomplished by simply multiplying the ex-

ponent by a constant value, which effectively avoids this

problem. We therefore chose as the fitness value

FV = exp(30 X r).

The multiplier, 30, is chosen so that FV is a large number

that does not compromise the numerical accuracy of the

computer.

Termination of the GA Search. As mentioned earlier, the GA

uses random crossover and mutation to explore new regions

of the solution space and thereby avoid getting trapped into

such a local minima. Because there is no formal way to

estimate the global minima using GA, identifying the gen-

eration at which to stop the search and accept the solution
can be difficult. The final model is usually selected by either

terminating the GA after no improvement has been observed

for a number of subsequent generations or when the FV is

larger than some predetermined value. The latter criteria re-

quires us to make several assumptions regarding the forward
problem and the noise levels of the data, which can be ad

hoc. To avoid such assumptions, we choose the first criteria:

that is, we accept the model that best fits the data for at least

20 subsequent generations. This technique can still lead to

the choice of a local minima. To avoid such convergence,

we can carry out the GA with different starting conditions

and then compare the terminated solutions (Levin and Park,

1997). Toward this end, we compute solutions for several

different randomizing seed values and use different crosso-

ver schemes, that is, crossover occurring at one or two points

in the gene. We identify the consistent features of these mod-

els and accept the average of the models as the global min-
ima. This approach implicitly assumes that separate GA runs

all converge toward the global minima; tests with synthetic

data confirm this assumption. Also, the variation of each
parameter between different GA runs gives an estimate of
the robustness of our selected solution.

Testing the Modeling Algorithm

Synthetic tests have been carried out to investigate the

accuracy of the GA modeling. Seismograms are computed

for a published model of the Colorado plateau (Wolf and

Cipar, 1993) for regional source-to-receiver distances. The

resulting synthetic waveforms are then analyzed for the

crustal structure using the GA procedure outlined in the pre-
vious section. The best-fit model is then compared to the

input model to estimate the accuracy of our modeling al-

gorithm. The seismograms are computed for source-receiver
distances representative of this study, that is, between 150

and 850 km, and we use an implosion at a depth of 0.5 km

as the seismic source. For consistency, the synthetic is pro-

cessed similar to the data. The tests were carried out using

both noise-free synthetics and with seismograms containing

additive Gaussian noise. In the following sections, the effi-

cacy and the resolving capability of the modeling algorithm
in obtaining the input model from the data is discussed.

Input Model. We use the Chinle-Hanksville, Utah, model of

Wolf and Cipar (1993). The model consists of three crustal

layers of constant thickness and includes a mid-crustal re-

flector. This model _cludes slight velocity gradients in each

layer. Velocity gradients within layers are not modeled in

our study, and so we use the average layer velocity as a

representative value. We also add a sedimentary layer to our

input model. Thus the input model (IP) consists of sedimen-

tary, upper, middle, and lower crustal layer thicknesses of
1.5, 10.0, 20.0, and 18.0 km, respectively, with correspond-

ing P-wave velocities are 4.0, 6.0, 6.25, and 6.95 km/sec,

respectively (Fig. 4).

One of the important set of input parameters in the mod-

eling algorithm is the selection of limiting values of the
model space. We have used conservative estimates in these

synthetic tests: ___0.25 km/sec of the input values for the
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velocities and _+ 25% of the expected layer thickness are

chosen and the GA randomly selects models between these

range of values. We add that, typically in the western United

States, the crustal properties can be estimated more accu-

rately than these limits. We also use the synthetic experi-

ments to identify the values of crossover and mutation prob-

abilities that can give us a fast convergence to the expected

model. Several runs are carried out for both noise-free syn-

thetics and those with additive noise, and the final models

are compared. We find that GA runs with mutation proba-

bilities between 0.1 and 0.2 give us the best and nearly iden-

tical solutions. We choose a mutation rate of 0.125 for all

our modeling experiments. This number is equal to (l/n),

where n is the number of model parameters and is expected

to give us a more efficient search algorithm (B_ick, 1996).

Crossover rates varying between 0.55 and 0.95 are tested.

Though higher crossover rates lead to faster convergence

(Goldberg, 1989), a rate of 0.95 leads to a premature con-

vergence to a model that is not acceptably close to the so-

lution. These tests suggest that a crossover probability value

of 0.85 gives us the most efficient algorithm.

Test with Noise-Free Data. In this experiment, the com-

puted synthetics are modeled to obtain the best-fitting output

model (OP). In the absence of noise and given a long enough

run time, we expect the solution to ultimately converge to

IP because the correlation coefficient for this model should

be equal to 1. Due to various factors that include the inherent

nonlinearity of the forward problem, the trade-offs between

model parameters, and finite computing resources combined

with the fact that the convergence rate of GA gets progres-

sively slower as it nears the solution, we choose a solution

(OP) that is reasonably close to IP after no improved model

has been generated in 20 consecutive generations. The

model we chose is generated in the 44th generation and has

layer thicknesses of 1.49, 9.7, 20.17, and 19.03 km and ve-

locities of 3.85, 5.96, 6.18, and 6.92 km/sec from the shal-

lowest to the deepest layers, respectively (Fig. 4). A com-

parison between models OP and IP show that our modeling

technique is capable of retrieving the input parameters to

within 1 to 4% accuracy. The thickness estimate of the deep-

est layer is off by up to 5.5%. This is not unexpected given

the lack of sensitivity of our dataset to the deeper layers.

Figure 5 shows the convergence of the model parameters

toward the final solution. We can infer that the GA with

noise-free synthetics converges to the solution adequately

by the 25th generation.

Test with Noisy Data. For this test, Gaussian random noise

is added to the "data" seismograms. A signal-to-noise ratio

of 10, approximately equal to the SNR observed in the re-

corded seismograms, is used. Using this realistic example,

we can estimate the effects the trade-offs between model

parameters and convergence to a global minimum in the

presence of multiple local minima. The GA input parameters

are chosen as before with probabilities of crossover and mu-

tation fixed at 0.85 and 0.125, respectively. The GA ran-

domly chooses models where the velocities are allowed to

vary to within 0.25 km/sec of input values and the thick-

nesses can be varied by up to 25%. We carried out 11 dif-

ferent GA runs using different random model generators (by

changing the randomizing seed value in the-GA) and also by

using both one-point and two-point crossover schemes. Fig-

ure 6 shows representative models obtained using GA with

noisy data. Note that the models all have similar features and

are close to the average model. Figure4 shows the final

model for this test, which is the average of the individual

models generated from different GA runs. We use the vari-

ability of the output model parameters to estimate the errors

in these values. The average model has layer thicknesses

equal to 1.57 + 0.07, 9.88 _+ 0.39, 19.46 _+ 0.38, and 19.23

_+ 0.36 km and velocities equal to 4.01 _+ 0.04, 6.04 _+

0.02, 6.21 _+ 0.01, and 6.97 + 0.03 km/sec, respectively,

from the shallowest to the deepest layers. We accept the

standard errors as rough accuracy estimates on our estimated

model parameters.

Modeling of Recorded Seismograms

In this section, we present our best-fit estimates of the

one-dimensional crustal structures of the Colorado plateau

and Great Basin provinces of the western United States. The
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crustal structure in these regions are essentially three-di-

mensional, and the models presented in this study should be

considered a spatial average over the sampled regions. Note

that the model parameters along with their error estimates

are dependent on the parameterization and the range of their

allowable values. As described earlier in the text, values

from published literature along with results from sensitivity

tests justify our initial values. Though modeling small sub-

sets of data can give us improved fits, we consider all of the

stations in a region together to improve spatial averaging.

Crustal Structure of the Colorado Plateau. Seismograms

recorded at stations CYF, KNB, LMP. MDW, RCC. SRS, and

WMT are used to model the crustal structure of the Colorado
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Figure 6. Testing the accuracy of the modeling al-

gorithm in the presence of noise. Noise with signal-

to-noise ratio of 10.0 (typical for the Rayleigh wave-

forms used in this study) is added to the synthetic

seismograms computed for the input model (see text).

Models generated in 11 GA runs with different ran-

domizing seed values and with both one-point and

two-point crossover schemes are shown. The models

are similar though the variability between the model
values increases for velocities and thicknesses for the

deeper layers.
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plateau. The moveout windows used to excise the Rayleigh

waveforms vary from [2.0 5.0] km/sec for RCC at short

source-receiver distance to [2.55 3.3] km/sec tot the farthest

station, KNB. The layer thicknesses are allowed to vary be-

tween [1.0 3.0], [8.0 14.0], [15.0 25.0], and [14.0 22.0] km

and the P-wave velocities between [3.0 5.0], [5.75 6.251,

[6.1 6.48], and [6.7 7.0] km/sec, respectively, for the shal-

lowest to the deepest layers.

Our model, which is constructed from a sparse distri-

bution of stations, can be compromised by inadequate spatial

sampling. To resolve this issue, we have also carried out a

number of experiments by deleting one or more stations and

estimate the best-fit model. A number of runs are carried out

for each subset of the dataset, and the average model from

each of these runs is given in Table 1. We performed three

separate sets of GA modeling by (a) removing stations RCC

and KNB, located closest and farthest to the source, respec-

tively; (b) removing the data recorded at station RCC that

can be biased by high mountains and deep basins located

close to the station: and (c) removing stations RCC, WMT,

and MDW, where a portion of the source-receiver path does

not lie on the Colorado plateau. We conclude from these

experiments (Table 1) that the transition zone structure and

the complicated seismic anomalies in northwest Utah do not
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Table 1

Crustal Models for the Colorado Plateau Region

Dataset 1 Dataset 2 Dataset 3 Dataset 4

Using All

of the RCC Is RCC and Stations KNB.

Layer Colorado Removed KNB Are LMP. SRS. Colorado Plateau Model

Plateau Stations from List Removed and CYF

Various Seed Various Seed Various Seed Various Seed

h vp h v_ h V,, h V_

A'.erage of 12 GA Run',

h _"r

Sediments 1.5 3.04 1.5 3.07 1.4 3.1 1.57 3.01 1.5 +- 0.04 3.05 _+0.02

Upper crest 8.4 5.76 8.3 5.77 8.3 5.9 8.40 5.76 8.3 _+ 005 5.78 _+0.01
Middle crust 15.2 6.46 15.3 6.45 15.4 6.4 15.25 6.48 15.3 - 0.(_ 6.44 - 0.1)1

Lower crust 14.3 6.99 14.6 6.99 14.3 6.95 14.30 6.99 14.4 _ 0.1 6.98 _++0.0t)2

We show the average models for four separate inversions using subsets of the dataset, using different randomizing seed values, and two different crossover

schemes for each dataset. The final Colorado plateau crustal model, which is an average of the separate models generated in each of the runs. is shown in

the last column of the table. In this table, h signifies thickness in km. and Vt, signifies P-wave velocity in km/sec. The uncertainty in the final model is for

this parameterization only and does not cover all possible crustal models.

bias our one-dimensional model. Between the different mod-

els, the layer thicknesses are consistent to within 0.2 km, and

the individual layer velocities vary by less than 0.12 km/sec.

As described earlier, these values are smaller than the as-

cribed error bars for the model parameters and indicate that

each of the solutions are close to the global minima. The

average of these models is accepted as the one-dimensional

crustal model for the Colorado plateau (Table 1 ). The largest

error is in the estimation of thickness of the lower crust. The

primary features of this model are (a) an average crustal

thickness of 39.5 km; (b) thin sedimentary layer 1.5 km

thick; (c) velocity increases of more than 0.5 km/sec at

depths of 10 and 25 km; (d) a fast lower crustal velocity of

7.0 km/sec, and (e) absence of mid-crustal low-velocity

layer.

Our crustal thickness value, which is based on the Ray-

leigh-wave fits, receiver function crustal P and S times, and

a fixed upper mantle velocity, is on the lower end of esti-

mates for this region. Recent receiver function results of

Sheehan et al. 11997) indicate an average crustal thickness

of 42 km in the Colorado plateau (assuming an average

crustal P-wave velocity of 6.3 km/sec and a Vp:Vs of 1.73).

Analysis of refraction data suggest an average Moho depth

of about 41.5 km (Roller, 1965). Surface-wave dispersion

studies by Keller et aL 11976, 1979) and Schneider 11997)

indicate a crustal thickness of 40, 45, and 43.5 kin, respec-

tively. A reinterpretation of Roller's data by Wolf and Cipar

11993) gives a crustal thickness of 48 km, which is not con-

sistent with our results.

Figure 7 shows a comparison of our crustal models with

several published in the literature. Our model most closely

resembles the model presented by Keller et al. ( 1976), which

was constructed using surface waves in a region of the north-

ern Colorado plateau similar to ours. Our sedimentary layer

thicknesses and velocities are in excellent agreement with

those presented in studies that have explicitly modeled this

layer (Keller et al., 1976, 1979; Roller, 1965). The presence

of an upper crustal velocity increase near 10 km depth is
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Figure 7. Comparison of our final Colorado pla-

teau model with published models of one-dimen-

sional crustal structure of the same region. The error

bounds of our preferred model are given in Table I.

consistent with the results of Wolf and Cipar (1993) and

Keller et aL 11976). We also observe a prominent mid-

crustal velocity increase at approximately 25 km depth. This

layer has been observed by Roller (1965) and Prodehl and

Lipman (1989). Published values for this velocity increase

range from 27 to 29 km (Allmendinger et al., 1986, from an

analysis a COCORP line in Northern Colorado plateau), 30

km (Wolf and Cipar, 1993), 24 km (Keller, 1976), and 29.5

km (Schneider, 1997). We observe a slower upper crustal

velocity compared to those reported in the literature. This

might be because our paths sample more of the slower ve-

locity sedimentary basins in the northwestern Colorado pla-
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teauthantheotherstudies.Weobserveaveryhighlower
crustalvelocitythatis consistentwithresultsfromother
studiesof theColorado plateau crustal structure, for exam-

ple, 6.8 km/sec (Roller, 19651, 6.8 km/sec (Keller et al.,

1976), 6.95 km/sec (Wolf and Cipar, 1993), and 7.0 km/sec

(Schneider, 19971. This can explain the unusually small im-

pedance contrast observed for the Moho in a receiver func-

tion study of the CPGB stations (Sheehan et al., 1997). Also,

the presence of a relatively thin crust under the high standing

Colorado plateau lends support to the hypothesis that the

high topography of this region is not completely compen-

sated by the crust (Sheehan et al., 19971.

Crustal Structure of the Eastern Great Basin. The crustal

structure of the eastern Great Basin province is modeled us-

ing data recorded at stations BMN, ELK, GAR, MLC, MNV,

RTS, and WCP (Fig. 1). The ray paths sample transects

through northern Utah and eastern Nevada. As described

earlier, we prescribe a range of values from which the GA

randomly chooses the model parameters. For the Great Basin

model, the ranges are [i.0 6.01, [4.0 12.01, [8.0 12.0], and

[8.0 16.0] km for the thicknesses and [2.5 4.51, [5.8 6.21,

[6.1 6.5], and [6.7 7.1] km/sec for the velocities for the shal-

lowest to the deepest layers in the model.

Though using the radial- and vertical-component seis-

mograms for seven stations improves the spatial sampling

of the Great Basin region, lack of crossing paths can bias

the model search. This is because we are essentially solving

for the average crustal structure without complete coverage

in a strongly heterogeneous region. For example, the path-

to-station WCP crosses the Great Salt Lake Basin, and Ray-

leigh waves can be strongly affected by this large sedimen-

tary feature. Moreover, significant portions of the paths to

the stations ELK, GAR, and WCP traverse the transition zone

between the Colorado plateau and Great Basin provinces,

which has a somewhat different seismic structure than the

Colorado plateau and Great Basin provinces straddling it

(Sheehan et al., 1997). Thus, the best-fit models need to be

carefully appraised before we accept the average model. To-

ward this end, we have computed separate GA runs with the

stations that have paths mostly in the eastern Great Basin

province, that is, BMN, RTS, MLC, and MNV. These models

are then compared to those computed for all seven stations.

In Table 2, we present the best-fit models. Comparing mod-

els computed from the whole dataset and a subset of the data,

we note that they are essentially similar though the structure

of the sedimentary layer differs. The model computed from

the subset of the data consists of a thicker sedimentary layer

with faster P-wave velocity. This is most probably a reflec-

tion of the older basin structures present in northeastern Ne-

vada. We combined the individual models from all the runs

and average them for the final Great Basin model (Table 2

and Fig. 8). This model consists of a 35.0-km-thick crust,

which is the same as that obtained by Priestley and Brune

(1978) and is close to the values presented by Schneider

(19971 and Keller (19751, 31.5 km and 29 km, respectively.

Table 2

Crustal Models for the Great Basin Province

Dataset I Dataset 2

Using

Using All Stations

Layer of the BMN, RTS, Eastern Great Basin

Great Basin MLC. and Crustal Model

Stations MNV

Average of 7 Different

Various Seed Various Seed GA Runs

h V e h Vp h V_,

Sediments 2.8 3.0 3.4 3.7 2.9 _+ 0.3 3.1 _+ 0.2

Upper crust 8.1 6.1 7.1 6.1 8.0 + 0.8 6.1 _+ 0.02
Middle crust 11.0 6.4 11.7 6.4 11.1 - 0.3 6.4 -'- 0.03

Lower crust 13.0 6.7 13.1 6.8 13.0 - 0.7 6.8 + 0.02

We show the final models for two separate runs: (a) the vertical- and

radial-component seismograms for all of the Great Basin stations are mod-

eled (dataset 11; (b/ ',,,'hen stations for which the seismic paths are mostly

in the Great Basin province are modeled (dataset 2). The models are similar

and the individual models from each run is averaged to produce our Great

Basin crustal model, which is shown in the last column of the table. In this

table, h signifies thickness in km and Vp signifies P-wave velocity in km/

sec. The uncertainty in the final model is for this parameterization t)nly and

does not cover all possible crustal models.
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Our model indicates a 2.9-km-thick sedimentary layer with

a P-wave velocity of 3.45 km/sec. This is thicker than the

shallow layer obtained by Keller et al. (1979) but is com-

parable to the 2.5-km-layer presented by Priestley and Brune

(1978) and Song et al. (1996). Our upper crust and middle

crust layers have an average velocity of approximately 6.1

and 6.4 km/sec, respectively. The average velocity of these

two layers of 6.2 km/sec is similar to the values obtained by

Priestley and Brune (1978), Song et al. (1996), and Schnei-

der (1997). The lower crustal layer has a P-wave velocity of

6.8 km/sec. This value is similar to that obtained by Priestley

and Brune (1978) but is higher than the 6.4 km/sec obtained

by Song et al. (1996) and Schneider (_997). We note that

the Rayleigh waves arrive later than predicted at stations

BMN and ELK, indicating that the crustal velocities are

slower or the crust is thicker in the northern Great Basin

province, compared to our average model. Finally, we note

that the fit to data for the Colorado plateau seismograms is

comparatively better than those that traverse the Great Basin

province and is probably due to the strong lateral variations

of velocity observed in the latter region.

Conclusions

In this study, we have developed a technique to search

the parameter space efficiently to model regional broadband

seismograms for crustal structure. This technique is based

on the GA procedure that generates random models consis-

tent with an allowable set of parameter values. Using an

accurate estimate of the source mechanism and location,

these models are used to compute synthetic seismograms

that are then compared to the recorded data. and the best-

fitting model is estimated. This technique assumes that the

seismic source model is available, though this is not a nec-

essary condition for this technique. Because having more

free variables leads to longer run times, we vary only eight

parameters in our search procedure, that is, the thickness and

P-wave velocities of four crustal layers. Each GA run is car-

ried out with different randomizing seed values and also with

different crossover and mutation schemes. This process al-

lows us to avoid converging to a local minima.

Using this technique, we have modeled the Rayleigh

waveforms recorded at the CPGB and USNSN stations for

separate models of one-dimensional crustal structure in the

Colorado plateau and the Great Basin provinces of the west-

ern United States. For each of these regions, several inde-

pendent runs are carried out with subsets of each dataset to

estimate the robustness of the final models. The average of

the models estimated from each of these runs is accepted as

the crustal model Ibr these regions. These one-dimensional

models are consistent with other published results of similar

structure in these regions. The crust is about 5 km thicker

under the Colorado plateau compared to the Great Basin,

whereas the latter region has a thicker sedimentary layer.

Also, our model indicates a very high lower crustal velocity

in the Colorado plateau region.
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